Kinetic isolation of a slowly recovering component of short-term depression during exhaustive use at excitatory hippocampal synapses.
نویسندگان
چکیده
This study examines the kinetics of the longest lasting form of short-term depression at excitatory hippocampal synapses. After initial depletion of the readily releasable pool (RRP), continued 20-Hz stimulation was found to be fast enough to maximally drive presynaptic neurotransmitter exocytosis; maximal is defined here as the rate needed to maintain the RRP in a nearly empty steady state. Induction of depression proceeded in two distinct phases. The first was caused by RRP depletion, whereas the second is shown to reflect the progressive reduction of the overall rate at which new vesicles are supplied to the RRP and is termed "supply-rate depression." Supply-rate depression is identified further with the emergence, during heavy use, of a rate-limiting vesicle trafficking step that slows the timing of RRP replenishment by switching from a fast (tau congruent with 7 s) to a slow (tau congruent with 1 min) vesicle supply mechanism. Both mechanisms apparently follow first-order kinetics. After the induction of the maximum amount of depression, individual synapses were able to output only <1 quantum of neurotransmitter per synapse per second, matching previous predictions based on cell biological measurements of synaptic vesicle cycling. Surprisingly, the onset of supply-rate depression occurred with a marked delay, not having a detectable impact on synaptic function until after several seconds of continuous use. The delayed onset is not consistent with traditional vesicle trafficking models, but may be important for limiting the impact of supply-rate depression to pathological episodes and might function as a native antiepilepsy device.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملAugmentation controls the fast rebound from depression at excitatory hippocampal synapses.
Short-term plasticity occurs at most central chemical synapses and includes both positive and negative components, but the principles governing interaction between components are largely unknown. The residual Ca(2+) that persists in presynaptic terminals for several seconds after repetitive use is known to enhance neurotransmitter release under artificial, low probability of release conditions ...
متن کاملShort-term plasticity optimizes synaptic information transmission.
Short-term synaptic plasticity (STP) is widely thought to play an important role in information processing. This major function of STP has recently been challenged, however, by several computational studies indicating that transmission of information by dynamic synapses is broadband, i.e., frequency independent. Here we developed an analytical approach to quantify time- and rate-dependent synap...
متن کاملMorphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons
Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...
متن کاملHippocampal Interneurons Express a Novel Form of Synaptic Plasticity
Individual GABAergic interneurons in hippocampus can powerfully inhibit more than a thousand excitatory pyramidal neurons. Therefore, control of interneuron excitability provides control over hippocampal networks. We have identified a novel mechanism in hippocampus that weakens excitatory synapses onto GABAergic interneurons. Following stimulation that elicits long-term potentiation at neighbor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 100 2 شماره
صفحات -
تاریخ انتشار 2008